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STABILITY IN LINEAR DELAY EWQATIONS

by

Jack K. Hale, Ettore F. Infante

and Fu-Shisng Peter Tsen
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ABSTRACT

For linear autonomous differential difference equations of retarded

or neutral type, necessary, and sufficient conditions are given for the zero

solution to stable (hyperbolic) for all values of the delays.



1. Introduction

This paper is devoted to the study of the effect of the delays on the

asympotic behavior of the solutions of linear retarded and neutral differential

difference equations. A special case of the retarded equations considered is

(1.1) k(t)- A0x(t) + IN Akx(trk)
k-l

where X , each Ak is an n x n matrix and each rk > 0, k 1#2,...,N.

It is known that the asymptotic behavior of the solutions is determined from

the solutions of the characteristic equation,

(1.2) f(,,r,A) d=f det[AI -A0- N Ake Ark] 0,
k=l

Let a(r,A) be the supremum of the real parts of the A satisfying (1.2).

It is well-known that a(r,A) < 0 implies the zero solution of (1.1) is uniformly

asymptotically stable (see, for example, (4]).

Because the supreaum a(r,A) is attained at some specific value of A

satisfying (1.2) and the function f(X,r,A) is continuous in r,A, it follows

that a(r,A) is continuous in r,A. Therefore, the property of being asympto-

tically stable at some point r0 ,A0  is preserved under small perturbations

in r,A from r0,A0 .

Our primary objective is to give conditions on the coefficients A in

(1.1) which will ensure that Eq. (1.1) is asymptotically stable for all delays

r a (rl, ... r.) with rk > 0, k a 1,2, ... , N; that is, we want to charac-

terize those values of A such that a(r,A) < 0 for all rk>0# k a 1,2# .. , N.

Some aspects of this problem have been previously discussed by Zivotovski [7],

Datko [3], Repin [5], Silkwskii [6], Cooke and Ferreira [2).
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If we call the set of such A the stable cone S for (1.1), then ao

of our results states that A C S if and only if

(i) dot A"
k O

N rU(ii) dot[iy - - I As s ] 00 for all

y ER, y 0, sl CC, s 1, j - , 2, ... ,N.
is

These conditions also imply that the spectrus of A=0 and the spectrum

of A lie in the left half plane.

If the equation (1.1) is a scalar equation, then the above conditions

for A to be in S simplify to rk-0 A < 0, J AI1 <I%1. This latter
kul

result was obtained by Zivotovski [7].

In the applications, it is not always true that the delays rk vary

independently of each other. For example, with three delays, rl,r 2 ,r3, ome

may have rI N S1 r2 = s 2, r3  s I * s2 for some positive numbersss 2  In

this case, the stable cone can be larger than the one obtained before. We also

give a characterisation of the stable cone in this case.

Piaally, the results are extended to the Much more complicated case of a

neutral differential differente equation

V- koN x(t-rk)] % *0 rk k~x(t-rk)

The basic difficulty here arises from the fact that the asymptic bdavior of

the solutios of the difference equation

x~t) - IN-Sk x~t - rk1 a 0

aul

depens in a very comlicated way upon the delays rho The results fft this
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case are contained in Section 5 and rely heavily upon Avellar and Hale [1].

2. General results for retarded euations.

Suppose - [0,-o), NR - (-,a*). r u (r 1 , . .. r) C CR

k"(l' "' k' kj- 0 integers, yk 0, Yk- -, YkjrJ

kl,2, .. , N, j=l,2. , M, and consider the retarded differential difference

equation

N
(2.1) k(t) - A0x(t) Akx(t - Yk" r)

k l

where x CRA and each A k , k0,1, ... , N is an n x n real constant matrix.

The characteristic function for Eq. (2.1) is

(2.2) f(X,r,A) det[X1-AO- Ake " ]
k-i2

where A - (AA 1 , .... AN) CIRD( l)
Definition 2.1. System (2.1) is said to hyperbolic at (rA) if f(X,rA) 0

implies Re A A 0. System (2.1) is said to be asymptotically stable at (r,A)

if f(Xr,A) a 0 implies Re X < 0.

The delays in Eq. (2.1) are the constants yk.r, k-l,2, ... , N. They are

not independent and are determined by the vector r - (rl,...,r 4 )ERi) M. For

example, if N a 2, N a 3, r - (rl,r 2), yl = (1,0), y2' (0,1), Y3 
= (1,1), then

the delays are rl,r2 r + r2 .

Our objective is to determine conditions on the coefficients A in (1.1)

to ensure stability (or hyperoolicity) for all values of rE R t) . This means,

in particular, that, for a given ro, we mast have stability (or hyperbolicity)

for all ar0  with a > 0. By letting t 4 at in (1.1), this ians that, if

A0  ensures stability (or hypebolicity) for all ire P+) M , then a A0  also

ensures this for every a > 0; that is, the set of such A's is a cone. We

>"
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foimalize these ideas in the following

Definition 2.2. For a given rE(Nt) , the ray Y through r is the set

(a r E(): a > 01. For a given r0 E (]t ) , the hyperbolic cone at TOO

designated by Hro, is defined by

2
H A En(N+): Eq.(2.1) is hyperbolic at (rA)

0r
for every rEy o}

r

The hyperbolic cone H is defined by

H nHr :r+cklP)

For a given r° C (E00 , the asymptotically stable cone at r° , designated by

S o, is defined by
r

2
Sro = (AEn2(N+I) :Eq. (2.1) is asymptotically

stable at (rA) for every r E yro}

The asymptotically stable cone S is defined by

s flnr(Sr:r cx~M

In the following, the notation ReA(A) for a matrix A designates the set

consisting of the real parts of the eigenvalues of A. As a preliminary for

the classification of HrS r , we have the following elementary result, a form

of which was proved by Datko (33.

Theoreu 2.3. A E Hr[or Sr] if and only if

H r

(i) ReA(I Ak) 0 _or Re X( < 01

(it) f(iycir,A) 0 0 for all yC R, y 0, a 0.



Proof: Let sa = max {Re X<0:f(, r,,A) 0 } u , min {Ra X > 0:f( ar,A) - 0}

with s .- u. + - if the corresponding set is empty. The numbers sVua

are continuous in a. Condition (i) implies so < 0, u0 > 0. If AJr ,

then there is an > 0 such that either s4 0 -0 or u0 -0. This con-
03 10

tradicts (ii). Thus, (i),(ii) imply AEHr. The converse is obvious.

For the more difficult equations with distributed delays, Cooke and

Ferreira [2] have obtained nontrivial results in the spirit of Theorem 2.3.

Theorem 2.4. A E H if and only if

N
(H1) det A A 0

1 [iA 0  Sl

(H2 ) det 1 0...s1 * 5 M ] S 0 for all yE, y 0

siC C, IsjI 1, j = 1,2,... , M.

A ES if and only if (H2)' and ReX(I Ak) < 0.

Proof. Suppose AEH. Then (H1) is satisfied. If (H2) is not satisfied

at (y,s), choose y 0 Oek, so that -yek > 0 and sk = exp(iek) for all k. With

rk = -ek/y , we have f(iy,r,A) a 0 which contradicts the fact that A E H.

Conversely, suppose (HI),(H2) are satisfied and A i H. Then there

is an c > 0, y E, y A 0, P E (R) M  such that f(iy, mrOA) - 0. Since

this contradicts (H2), we have proved the first part of the theorem.N

The condition ReA(I Ak.) < 0 is equivalent to saying that Eq.(2.1)
k•O

is asymptotically stable for r m 0. Thus, the last statement in the theorem

is true.

To obtain other characterizations of H,S, we need the following 1in0.

We are grateful to John Mallet-Paret for assistance in the state ts and

proofs of the next two results.
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Le2.5. jf

N YkI Y
(2.3) P(As 1, .. dot [XI .A- .- *I , N "

lk-i" S

then the hypothesis (H2) Imlies

2.4) P(iy,s1, ... ,s p10 for y E , Is l j - 1,2, ... , ,.

Proof: Fix s, s - 1, j - 1,2, ... , M and osider the finction

q(A'a) dgf p(X,czsO.** 0

Designate the zeros of this equation by a(k). Then ma() is meromorphic,

defined on some Reimann surface over the A-plane and lii Iul)I I

Consider the curve in the (a-plane defined by a(iy), y 6 Mt. Hypothesis (H2)

implies that lc(iy)l > 1 if y 0 0. Thus, la(iy)l > I for all y. Thus,

0 00
Q(iyca) - P(iy.Qs1  ... , 0~) 0 for jcal < 1, y ECR and all 5.aISp

j = 1,2, ... , N. This proves the lema.

By taking each s- 0, j - 1,2, ... , K4,in Lema 2.S, we obtain

corollary 2.6. Hypothesis (H2) implies Re A (Ao) 0 0.

Corollary 2.7. If A f H, then Re X (I Ak) # 0, Re A (A) p0 and the

N 0
uatrices I Ak and Ao have the san nuer of eigenvalues with positive

and .neative real parts.
N

It AECS, then -Re A (A6) < 0, Re X(I k-%) <O.

Proof: Let P(A,s) be defined by Relation (2.3). Let Q(Xs) = P(, s, ... ,5).

FrM Lemma 2.5 sad Relation (2.4), Q(iy,s) p 0 for 0<. < l, SIt. Hypothesis

(NI Implies Q(iy, 1) p10 for &I I y CIt This, 'M.s h sao wi 6a tk

* . -

~ ~~II i-
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imaginary axis for any s C (0,1]. Since Q(,O) - dot [XI - AO], Q(O,l) =
N N

dot [XI - kOAk], it follows that ReX(A0 ) 0 0, ReX( Ak) 0. Sinew the
k=D 

k-0

zeros of Q (Xs) - 0 are continuous in s, the result follows immediately.

The verification of Hypothesis (H2) is extremely difficult. For the

case of an nt h  order scalar equation and independent delays, this hypothesis

can be written in a more convenient form.

Following Zivotovskii, consider the scalar equation

(2.5) y (n)(t) + In aj 0 y ( n - j ) ( t) + IN In a. y(n-J)(t - ) : 0

iJ k-1 j=l jk ( - w)

where wk > 0, aJk EIR for all j,k. We can now state the following generali-

zation of the results in Zivotovskii [7].

Theorem 2.8. Let a = (ajk, j 1,2,...,n, k=0,1,...,N)

n nl-j

po(Xa) -n + a.0X
j~l

n n-j
pk(Xa) = akX

j.1 jk

Then a 6 H if and only if

N
(2.6) %j , 0

N
(2.7) Ip0 (iy,a)I > I Ipk(iya)l for all y # 0, y E R

7k-

and then necessarily nO0 j 0.

The vector aCS if and only if (2,6),(2.7) are satisfied and

(2.8) Re X < 0 if p0 (X,a) - 0.

"4&



Proof: Transform the equation to an equivalent system

N
= A0 x(t) + Ik-iArx(t - wk)

where x = (yy(l) ...,y(n-1)). The characteristic function is given by

N
f(X,ra) = p0(X,a) + I k=Pk(X,a)e-wk.

Hypothesis (H1) is equivalent to f(0,r,a) 0 0 which is (2.6). Hypothesis (H2)

is equivalent to

N
p0(iy,a) + Ik=l pk(iYa) sk 0 0 V y E]R, y 0 0, = 1,

and this is equivalent to (2.7). The last statement follows from Corollary 2.7

since the characteristic function for A0  is p0 (X,a). This proves the theorem.

We also can generalize Zivotovskii's result to the case where the delays

are dependent, but it cannot be stated in such a simple fashion. The proof is

the same as before.

Theorem 2.9. Consider again Eq. (2.5) with wii = yj'r, r E (R), y= (Y ...,YjM),

Yjk nonnegative integers, # 0. With po(X,a), pk(X,a) defined as in Theorem

2.8, the vector a E H if and only if Relation (2.6) and

N Ykl YkM
(2.9) pO(iya) + k pk(iy,a) s, ...sM 0 VyEIR, y 0, Is 1= 1,

k=l1
j = 1,2,... ,M

are satisfied.

The vector a 6 S if and only if relations (2.6),(2.9),(2.8) are satisfied.

For the case of one delay in Eq. (2.1) one can obtain an equivalent

formulation of the cones H,S following an idea of Repin [5] via the following

lema.

' " ' .-.,



Loma 2.10. If AoAz, are real n x n matrices, then the statement

(2.10) For every v E R, V 0 0, the solutions of the equation

det -OIJ

satisfy Ixl < 1

is equivalent to the statement

(2.11) For every y EIR, II < 1, det[iy - A0 - LAl] 0 0

Proof: If X 0 0, V 0 0, then the equation in (2.10) is equivalent to

0 -XVIi + (XA +A) 2 1

det 0

which is equivalent to

det [X 2 UI + (IA0 +AI)2 0

which is equivalent to

det I-X(iy) + (iA 0 +AI)) = 0

for y E R, y j0. If lXi < 1 when this is satisfied, then this is equivalent

to saying that

dot [iy - A0 - aA1] -0, y ERI, y 0

implies jal 3, 1. Thus, the solutions of this equation for all y ECR satisfy

lot > 1. Thus, we obtain (2.10) is equivalent to (2.11) and the lea is proved.

L _..... [



-10-

Corollary 2.11. For the u-dimensional system

k(t) a A.X(t) + AIX(t-r)

A - (%A 1 f H if and only if (2. 10) and

(2.12) det(AOe.Al) 0 0

are satisfied. A E S if and only if these conditions and Re )X(A%) < 0.

Proof: This is an imediate consequence of Lomas 2.10,2.5 and Theoremn 2.4.

3. First order scalar equations. For first order scalar equations,

(3.1)M i -t &aX(t) + X akx(t-yk'r)
k-l

where a. EN 6 R 0,1,...,N, the characterization of the hyperbolic and asymp-

totically stable cones can be specified in terms of properties of the solutions

of the difference equation

N
(3.2) .a 0 y(t) + I aknl&y(t-yk'r) - 01,

It is the purpose of this section to obtain such a characterization.

Let a= all.. d

N
GA(9a a + I - ak COS Yk*e

(3.3)
K

B(O,a) - ak sin YkO * £Ul

The characteristic equation for the difference equation (3.2) is

(3.4) gQX,a~r) d f- a + &k Ay k

kai



r

The functions ct(6,a), $(6,&) are related to the function g(Xa,r) by

the relation

(3.5) g(iy,a,r) i(-yr,a) - iO(yra)

The main result of this section is the following

Theorem 3.1. For the scalar equation (3.1), a 6 H if and only if

N
(H3) a k 0 0

k=O

(H4) For each E , either a(G,a) p 0 or simultaneously,

(%(e,a) - 0, 8(ea) - 0. If (H4) is satisfiedthen a0  0.

The vector a E S if and only if (H3). ( H4 ) M a < 0.

Proof: For n 1 1, the condition (HI) in Theorem 2.4 is equivalent to (H3)

and (H2) is the same as

( e,a), y -B(ea)) o 0 for all yC R, y 0, e E M

which is equivalent to (H4). Corollary 2.7 implies a0  0. The statement

about S is also a consequence of Corollary 2.7. This completes the proof

of the theorem.

An inmediate consequence of Theorem 3.1 is the following result of

Silkowski [6].

Corollary 3.2 Suppose the compnents of r are rational and define the
functions

N
y(y) " &0 + k-I cos yk" r y

Then a C Hr if and only if
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(i ~ ak O
kai

(ii) For each y C M, y j0, either y(y) 0 0 or y(y) -0, 6 (y) 0.

Furthermore, a F. if and only ifl(i),(ii) and a~ < 0. Finally, condition

(ii) is eq~uivalent to

Re X < 0 if ao0 .+ 1ke k 0.
k-i

Proof: Since the components of r are rational, we may assume the equation

has only one independent delay. The result is then a special case of Theorem 3.1.

It is interesting to state Corollary 3.2 in terms of properties of zeros

of polynomials. If the components of r are rationaliwe can write

N
a0 + ak cos Y.r y h(cos y)

kui

(3.8)
N

k-ak sinf yk. r y =(sin y) g (cos y)

where h,g are polynomials.

Corollar 3.3. With h,g as in relition (3.8) ,the statement

Mi h(i) 0E 0 and, for every n~ 6 [0,1) for which h(T1) - 0,

it follows that g(n) - 0

is equivalent to the statement

(ii) h(l) 0 0, ao0 0,Re X< 0 if a0 .+k a-00

Proof: This is a restatement of Corollary 3.1.

Corollar 3.4. For the scalar equation

ao~t Ik. kxN-k
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K N

ehave a H if and am if I .& 0 e. II1&0.
' k-O kl -

The vector a E S if and only if &E H and O 0...

proof: Theorm 3.1 implies a E H if and only if k 0  ad

(H4). Hypothesis (H4) is equivalent to either

N
- ak cos ek p0

k-l

or, simultaneously,

cL(e,a) M 0

NBC8,a) - aksinek -no.
k-i

N

The latter relation implies I Jakj - jal. Conversely, if
k-i

N N
~k- akI :S la0 , then O(ea) = 0 for some 0 implies I lakl " Ia~ I
k-i kai

and each component 0k of 8 is 0 or v. But this implies 0(6,a) - 0.

The last assertion about S is also a consequence of Theorem 3.1.

Corollary 3.5. For the scalar equation

i(t) a a0x(t) + alx(t-rl) + a2x(t-r 2) + a3x(t-rl-r2)

we have a 6 H if and only if

(i) ao + a, + a2 + a3  0

(ii) I.a1 0 -- <l

80 a/aSO

1 - 0 C

noI -MEMN1

.t
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(iii) either *0 al -£2a 3 or - 2  *3

Thevector aES ifad only if aC H and &0< 0.

Proof: Theorem 3.1 imlies that a E H if and only if

0S 0, (i) and (H4) is satisfied; that is, if b ma
ao 4 j a 0 a and

ai(,a) - a0 [1 + b Cos 81 b Cos 2 + b3 Cos (a + 2),

8(6,a) - a0 [bI sin 01 + b2 sin 82 + b3 sin (81 + 82)1,

then, if there is a 8 such that a(8,a) - 0, then 8(8,a) = 0.

But, these e are precisely the ones for which c(9,a) (0,a) o 0;

that is, 1)

i01  i02  i0
1 + ble =-e (b 2 b 3 e +.

To have a solution of this equation, one must have 01,12 take on the values

0 or w. Checking separately the cases 01 a 0, eI * o, one observes that,

for any bl, one has a solution of this equation if and only if either

(3.9) 1 b1 *b 2  b$

or

(3.10) 1 -b I .b 2 - b 3

If we choose a value of b = (bl,b 2 ,b 3 ) which does not satisfy either of

these inequalities and, if (H4) is satisfied, then we mst have m(0,a) 0 0

for all 0 a (01, 02) Ei 2 . The relation a(9,a) 0 0 for all 0 EIR2  is

equivalent to

ie ie i
Re [ 1 e Ree [b 2 e l ] 0 0



for all 9 ER 2. This implies bll < 1. 'If Ibl _ 1. then it is eamily

observed that

if 0 <b < I, then - b I > b2 - b,

(3.11)

if 0 <- b < 1, then I b I > lb2  b3 1.

Relations (3.9), (3.10) and (3.11) are precisley the relations in (ii).

Thus, (H4) implies (ii). The converse is a straightforward reversal of the

argument. This proves the corollary.

If there are three independent delays in the equation in Corollary 3.5,

the condition (ii) would be replaced by jal1 + 1a2 1 + 1a31 <_ 1a0 1
which is a more restrictive condition on the coefficients than the one for

only two independent delays.

4. Some examples. In this section, we give some examples illustrating the

application of the results of Section 2 to equations of order > 2. These

examples will also show that the results in Section 3 do not generalize to

systems; that is, one cannot reduce the discussion of the hyperbolic and

stable cones to the discussion of properties of difference equations.

Example 4.1. Consider the system

(4.1) *(t) - B[x(t) - Px(t - r)]

where 5 is a 2x2 matrix with ReA(B) < 0, , is a

scalar, mlii 1. We want to determine conditions on Bp so that the

matrices (B, -Ua B) £ S, the asymptotically stable cone.
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BY USiS4 the Jordm normal form for 5, one sees that Theorem 2.4 asserts

that (D,-5) E S if and only if

-( CL ue'$ 0 for all yEst, y o, C R,

for every eigenvalus )(S) of B. If A(B) is real, this relation is

always satisfied. However, if A(B) is complex, this may not be true. In

fact,

p1/2
I +Pee- CI 2U cos e + V WT i ccue)

where

I taut"I  soe =(usino)/(l u Cos 0)

and 0' < 0 I II, COAMo 0. If 010 maxelC (U. )1 then~

>/2 if 0< j 1, o(I() I ir/2 if -l < o.

We can now assert that (B,-pIB) C S if and only if

---< arg XS M + CO(u) < Iw

for all eisenvalues A(B) of B. This clearly puts a restriction on the

eigenvalues of 3 and u with the restrictions being mre severe for

ut > 0 than for Ua < 0.

This example shows that the results In Section 3 cannot be generalixed

to systems. In fact, the zero solution of the difference equation

Byt) - psy(t-r) = 0

is asymptotically stable for evevy p, ul -c 1, abd (5,-) , .st belms



to S for every Bu.

Example 4.2. Consider the equation

(4.2) Y(t) + a01(t) + ali(t-r) + a2x(t) a3x(t-r) = 0

along with the characteristic equation

x2  + A (a + a2 • e'a + - =r
0 1 * 24a3e 0

If a = (a0,alsa 2,a3), then Theorem 2.8 implies that a 6 H, the hyperbolic

cone, if and only if

(4.3) a2 + a3  0

(4.4) IP(iy)l >IQ(iy) for all y 0 0, y 6 R

P(X) - x + a 0x  + a2

Q(X) = alX +. a3

The condition (4.4) is equivalent to

f(y2) df (y2a2)2 2 2 2 22 01 a3  > .

for all y 6 IR, or, equivalently, f(r) > 0 for r > 0. It is easy to show the

quadratic function f(r) > 0 for r > 0 if and only if

2 2 2&>0 impliesa% 2 2 'I o 2 I l > 1a31

(4.5)
2O a2 2>2•2 1 2 2 2
T h a -H < 0 sad o l >if (33+(.5 re so-ti-2f2)

1Tus. a E H if and only if (4.3),(4.S) are satisfied.
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Theorem 2.8 also implies that a 6 S, the asymptotically stable cone,

if and only if (4.3),(4.5) and Re < 0 if X2 + a0 X + a2  0; that is,

(4.6) a0 > 0, a2 > 0.

If Eq. (4.2) is transformed to a system of order two

k(t) * Aox(t) + Azx(t-r)

then the zero solution of the difference equation

Aoy(t) + Aly(t-r).* 0

is asymptotically stable if 1a31 < 1a2 1 which does not imply anything

about H.

S. Neutral equations. In this section, we generalize the results of

Section 2 and 3 to neutral differential difference equations

(5.1) d [x(t) - Bkx(tyk.r)] - A0 x(t) + . Ak X(t-Yk r)
-~ x~)-k.1 ku 1

where x F-Rn , each AOAkBk, k 1.,2,...,N, is an n x n constant matrix

and the yk,r are the same as before. The characteristic function for

Eq. (5.1) is

N l. l Yk r N 'Yk r
(5.2) g(T,r,AD) = dot (I-1 e )%k. 1 Ae

where A - (AoAl,..., A), Ba (Bit...,9%).

Definition S.i. System (S.1) is said to be hyperbolic at (rA,B) if there

is a 6 > 0 such that ReA:g(X,r,A,B) - 0 n [-a.] a l .

System (S.1) is said to be (uTmifo ly) asylmtotically stable at (r,A.5) if it
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it hyperbolic at (r,AS) and (ReA:g(A,r,AB) = On[-6,0) * 0.

Definition 5.2. For a given rO C ) M, the hyperbolic cone at r0 , designated

by HrOf is defined as

H o {(A,B) E n(N1x) Eq.(5.1) is hyperbolic at (r,A,B) for every

The hyperbolic cone H is defined by

H a fl {JHr:rC OR)
r

For ave n r - arO , The asiptotically stable cone a is defined byr+ r

S = Nl(Sr:rCR+)M

rr

The set Hr is not really a cone in (Al) space. In fact, if (Al) C Hr,

then (s,B) H for every a > 0, but (ci, cB) will generally not be. The

ro r

reason for this is that, if r w cir, t w (it, then the new equation has co- :

== efficients (aA,B). In spite of this fact, we retain the term cone for Hr,
but it should be reeed that the property of bing a cone holds only in the

A variable.
Our objective is to give a classification of the hyperbolic asympto-

tically stable cones. This probm is fach more difficult then th coreso pding

one for the retarded equation in Section 2 because the set of real pats of the

zeros of the chnacteristic *Ainction

(5.3) e(A,r,B) det - k,,4Bke ]kal
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of the difference equation

(5.4) y(t) -k SkY(t- 3k. r) 0
koi

does not depend continuously on r.

For the difference equation (5.4),we need the definitions anal out to

Definitions 5.1 and 5.2 for Eq. (5.1).

Definition 5.3. System (5.4) is said to be hypeZrbolic at (r,B) if there is a

6 > 0 such that (ReX:e(X,rB) = 0}l n-6 6] - o. System (5.4) is said to be

(uniformly) asymptotically stable at (rB) if it is hyperbolic and

{ReX:e(k,rB) - 0) n [-8,-) .

If Equation (5.4) is hyperbolic (asymptotically stable) at (r,A), then

it is hyperbolic (asymptotically stable) at (ar,B) for every a > 0. If we

assUm

N
(5.5) det(I - I B) 0O,

k-O

then it is also hyperbolic at a a 0 because 0ReX:e(,O,5) * 0} is empty.

Thus, with (S.S), if Eq. (5.4) is hyperbolic at (r0,5) it is hyprbolic for

every ( r), a > 0. This rms there is no reason to use the concept of

hyplerbolic come at rO  for Eq. (5.4). It becomes only secesswy to discuss

whether or not hyperbolic is or is not preserved under variations in r.

Thromout this section, we am e (S.S) is always satisfied.
f MS,.4. 3. (S.4) is said to be hpirlic 14L& 1. 0

________________(r A if thbere

iaaei e u(r0) ,eeof se.tBat'. (6-4)is e O'.l, at (rt)

r evewy r 6U(r). Eq. (5.4) Is said tob l L; liu , *.- bf

it is hype1bolic at (rr).for feer r C V)N. 1he twuo*.lt

q. (S.4) is the Set (I Is at ev€ (t),C
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Similar definitions are made for asymptotically stable locally at r,)

asymptotically stable globally at B and the asymptotically stable set for* t :Eq. (5.4).
In Definition 5.4, no mention is made of the variation of the concept

of hyperbolic with respect to variations in the coefficients B. The reason

for this is that if Eq. (5.4) is hyperbolic at (r09B ), then there is a neigh-

0 0
borhood V(B ) such that Eq. (5.4) is hyperbolic at (r ,B) for every

B C V(B 0) (see Avellar and Hale [1]).

We need the following fundamental result from [1].

2
Lema 5.1. Fix B 61 e N .The following statements are equivalent:

(i) There is an r C(I )M with rationally independent c!Ments such

that Eq. (5.4) is hyperbolic at (r ,B).

(ii) There is an r 0 (R + ) Nsuch that Eq. (5.4) is hyperbolic locally at

(r ,B).

(iii) Eq. (S.4.) is hyperbolic globally at B

(iv) 1 f I (r,B) fl- ~ ~ dt[ - = k' o,e eJR }

(v) If

E~,9r,) = det [I aI Bke Ol.e ,E

and r(r,B) - {P: 3 8 with E(p8e,rB) - 0}, then 0 t r(r,B).

The sawe result holds with hyprbolic replaced by asymptotically stable

mnd (iv),(vi a"e relaced by

(1v)' I(r,3) c [0,I)

(v) F(r,B) nl to,-i) o .
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With g(X,r,A,S) as in Relation (5.2), define

a'(r,A,B) - sup {ReX< 0 : g(X,r,A,B) - 0)

(S.6)

a (r,A,B) = inf {ReX> 0 : g(X,r,A,B) = 0}

and define a-(r,A,B) = - , a+(r,A,B) = + m if the corresponding set is

empty.

We need the following result which is stated without proof. The proof uses

some special properties of characteristic functions which we have not used before.

The reader can supply the details following ideas from [4, Ch. 12].

Lemma 5.2. If Eq. (5.1) is hyperbolic (asymptotically stable) at (r,A,B), then

the difference equation (5.4) is hyperbolic (asymptotically stable) at (r,B).

If Eq. (5.4) is hyperbolic at (r,A,B), then a'(ar,A,B), a+(cir,A,B) are con-

tinuous in a for a > 0.

One can now generalize the results of Section 2 to the neutral equation

(5.1) (see also Datko [3].)

Theorem 5.3. (A,B) E Hr (or Sr if and only if

(i) ReX [(I - Bk) ' I oI ] 0 (or< 0)

(ii) g(iy,otr,A,B)O0 for all y El, y 0, a >O0.

Proof: The proof is the same as the proof of Theorem 2.1, making use of

Lemma 5.1.
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Theorem 5.4. If

(57 N Ykl Y -l N kl Y'"(S.7) P(A,Sl. ,, ,A,B) - det -(I-j -1 l . .Sk) (A ~ k l . .!

then (A,B) E H if and only if

(HI) Eq. (S.4) is hyperbolic globally at B

(H2) P(O,l,...,1,A,B) 0 0

(H3) P(iy,sI,...,sMA,B) 0

for all y C R, y 0 0, Is i I 1, j = 1,2, ... , M.

The pair (A,B) E S if and only if (HI),(H3)and ReX[(I - B) ] < 0.
k=l k=O

Proof: Suppose (A,B) C H. Then Lemma 5.2 implies (H Lemma 5.1, part (iv)

implies there are constants 6 > 0, Y > 0 such that Idet( B kBksl .. sMk.1

> 6 for 11s.I-I1 < n, j = 1,2, ... , M. Therefore, P in Relatiot, (5.7)

is well defined for lis.1-l < n. Theorem 5.3 imp ica (H2), )f (H.) is not

satisfied for some (y,sl,...,sM), y 5 0, Ik = 1, choose ek ER so that

S U -Y ek > 0, k = 1,2,...,M. If rk * -ek/y, then g(iy,r,A,B) - 0,

which contradicts the fact that (A,B) E H. Thus, (A,B) E H implies (HI)-(H 3 ).
Conversely, suppose (H1)-(H3) and (A,B) 9 H. Then there is an o > 0,

y ER, y 5 0, r0 E OR+') M  such that g(iy, r 0,A,B) - 0. This contradicts (H3)
and proves the first part of the theorem.

The condition Re X[(I-l N IN Ak] <0 is equivalent to saying that
Eq. (S.1) is asymptotically stable at r * 0. Thus, the last statement in the

theorem is true.

'4i
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Our next objective is to obtain an alternative characterization of H,S

in terms of ReX(A0) as in Section 2.

Lemma 5.5. If Eq. (5.4) is hyperbolic globally at B, then, for any

0 0
P(iy,'Osl,...' Q 0 0 for y ER, Ical < I

or

P(iyQs0 ...,csM) 0 0 for y CR, Iil >1

If Eq. (5.4) is Asymptotically stable globally at B, only the first alternative

holds.

Proof: From the hypotheses on Eq. (5.4), there is a 61 > 0 such that for

any 0 <6 <6, , thereisa n > 0 such that

N Y 'k1 YkM,
det (1-1Bksl.l .-- s" )

for 1-6 < Is5I < 1 + 6, j = 1,2, ... ,!4. Fix si0 Isul ,

0 0
J - 1,2, ... , N and define Q(,,.) a P(X,,S O, ... , csL) for a C 4,X E.

Designate the zeros of this function by o(A). Then z(X) is meromorphic,

defined on some Reimann surface over the X-plane. As Ij * , one mast have

(I- k k TklA.0

Thus, for large lXI,

a(A)C (pet: IJl1J -1 } U f p E t: Iol I + AI
Cb

Consider the curve in the ci-plane defined by ci(iy), y C I.
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For y very large and positive, suppose ot(iy) E { F t 4: (PI >1 + 6 0.

Then Hypothesis (H3) implies that (c(iy)l > 1 if y 0 0. Thus, IG(iy) > 1

0 0for all y. Consequently, Q(iy,c) = P(iy,asO , ... oiasw 0 0 for 1011<1,

y Ea. If M(iy) C {pet: I l <1 -61 ) for large positive y, then

Hypothesis (H3) implies jc(iy)t < 1 for all y 0 0. Thus, Ici(iy)J _ 1

for all y and Q(iy,as O) 0 0 for all Jai > 1. This proves the leama.

Corollary 5.6. If (A,B) E H, then

N NReX[CZ k:l Bk) k A o.A0

If (A,B) C S, then ReX(A O) < 0, ReX[( - I Bk )- I A 0 < 0.
k1l k-O

Proof: Let Q(X,s) = P(X, s, .., , s). For real s, Lemma S.S implies

either

Q(iy,s) $0 for 0 <s <1, yC

or

Q(iy,s) $0 for I < s, y EIR

Hypothesis (H2) implies Q(iy,l) 0 0 for all y E R.

Thus, Q(.,s) has no noots on the imaginary axis either for 0 < s < or

for 1 < s. Since

N N
Q(X,l) = det[XI - (I - k I AkJ,

k-l k kO l

N N
it follows that RX(I - B k)' . A ]  0. This proves the first part of
it kal kuO
the corollary.

The last part follows from the last statement in Lemma S.S and the proof

of Corollary 2.7.
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Remark 5.7. one can have Eq. (S.4) asymptotically stable globally at B

and have CAB) 6 H, (A,B) i S. In fact, consider the equation

(5.8) d - cx(t-r)] ax(t)

with c real, 0 < c < 1, a > 0. The characteristic function is

xIe-Xr aX(l-ce"  ) - a

which is j 0 for X = iy, y EIR. Also, there is a real X > 0 such that

X(l-cexp-Xr) = a.

Let us now consider in more detail the scalar n th-order neutral equation

(n) bN (n)  nlaonj) N n kn-j )

(5.9) y(n)() I b y (t-wk) - . ( -a M a.k (t-k) = 0

k-l j=l k-i j-1l

where k >O, bkE R, ajk EN for all j,k. Let b = (b, ... ,b

a, 1, ... , n, k = 0, 1, ... , N), w = ( I' "'" ,WN) " If we write

this equation as a system oi first order equations,

d N N
- kx(t-'Ok)] - AOjc(t) + Akx~t-wk)-
kal kal

for x a (y,y(l), ,(n-l)), we have

(b !k)) b(k) b b(k) 0 0 otherwise

Bk bJ nn k' ij

0 1 0..%0

0 0 1 ... 0

A 0

0 0 0 ... 1

aho ah- 40o86-2P "10

IlL I ' ' ..:, .l I

I I II I II I I1 1
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0 0 ... 0

0 0 ... 0
Ak = k k 1,2, ... , N.

0 0 .. 0

ank a alknk n-l,k Ik

The characteristic function is

N 'wk
(5.10) g(X,.,a,b) - po(X, a) - Pk(X,a,b)e

k-l

po(X,a)= det[X-A0] = n -~ l

n
pk(X,a,b) = bkXn + J~jul

The corresponding difference equation is

N
(5.11) y~t) - ~k ky(t-wk) = 0

with characteristic function

N -

(5.12) eCX,W,b) 1 - [k~Ibke

One can now prove the following generalization of the result of
~Zivotovskii (7].

Theorem s.8. For Eq. (S.9), (a,b) E H if and only if

(5.13) Eq. (5.11) is hyperbolic
N

(S.14) k-O k 0 0

N
(S.15) 1po(iy,a)l > Ik-ilpk(iy,ab)I for all y CR, y i 0.

The vector (ab) C S if and onlX if (S.14),(S.1S), and
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N
(5.16) k Ibki < 1. Rek < 0 if p0CXa) - 0.

k-i

Proof: From Theorem 5.4, condition (5.14) is equivalent to Hypothesis (H2).

Hypothesis (H3) is equivalent to

N
p(iy aPb)k

(iy a b ) k i 0

for all y El, y 0 O, Is k1 = 1, k = 1,2, ... , N. But this clearly is

equivalent to (5.15). Thus, the first part of the theorem is true.

If (a,b) E S, then Lema 5.2 implies Eq. 5.11 is asymptotically stableN

at b. Part (v) of Lemma 5.1 implies this is equivalent to I IbkI < .
k-i

Corollary 5.6 implies ReA < 0 if po(X,a) w 0. This proves the theorem.

We can generalize Theorem 5.8 to the case where the delays are dependent,

but the result cannot be stated in such a simple fashion. The proof is the

sam as before.

Theorem 5.9. Consider again Eq. (5.9) with Wk Yk.r, r . (R ),

Yk 0 0, Yk 0 (Ykl ..."' YkM' Ykj > 0 integer. With po(X,a), pk(,ab)

defined as in (5.10), the vector (a,b) E H ifland only if (5.13)(5.14) in

Theorem 5.8 are satisfied and

N Yk1 TkN
(5.17) P0(iy,a,b) + k pk(iy.a,b)sI  ... s. 0

for all y E R, y 01 0, Iki - 1, k - 1,2, ... , M.

The vector (ab) C S if and only if (5.14),(5.17) and (5.16) are satisfied.

6. Scalar neutral equations. For first order scalar equations

(6.1) d N N
6xt) - Ik bk(tyk'r)] aox(t) + akx(tyk'r)

,, .... ~tYkk
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*where ao.ak,b k C R, k a1,29 . N, the characterizatiri of the hyperbolic

and asymptotically stable cones can be specified in terms of the properties of

the solutions of the difference equations

(6.2) y(t) - b bky(t - Yk'r) * 0

(6.3) a0 z(t) - IN k24 t - Yk-r) a
k.1

It is the purpose of this section to obtain such a characterization which

* generalizes the results of Section 3.

As in Section 3, let b - (b1 I . b) a (10- *.

N

k-l

(6.4)

N
(9a) * -I k sin y-

Exactly as in the proof of Theorem 3.1, one uses Theorem 5.9 to obtain

the following result.

Theorem 6.1 . For Eq. (6.1), (a,b) C H if and only if

(6.5) ~ .(6.2) is hyperbolic globally at b.

(6.6) kn ak 0

(6.7) Either wt(B,a) Ai 0 or e(9Da) - 0, 0(8,&) - 0.

* mmnd then necessarily ao0 u 0. The vector (a,b) C S if ad only if

N
(6.8) I lbk1 <(1, a 0 <0,
* kal

aid (6.6),(6.7) are satisfied.
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For the euation

dN N

(6.9) d [x(t) bkX(trk) ax(t) x(trk)
w k-ik k-- ]i- %-r)

the above theorem has a very simple interpretation for the case of stability

globally in the delays. In fact, Eq. (6.9) is stable globally in the delays

if and only if

NI lb il < 1
k=l

N
(6.10) k=Oa <0o

N
k. I1 .laol

k-l
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